
Introduction

I Controller | Stochastic model of environment |= System
I Maximize reward ; exploring the consequences of our decisions
I Very large systems ; sparse exploration, anytime algorithms

I Monte Carlo tree search algorithm

I Formal guarantees
I Symbolic advice to guide the exploration
I Learn the model?
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Playing on an MDP

Markov Decision Process
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I Strategy: ‡ : S æ A

I Infinite-horizon average reward:
Val(s0, ‡) = limHæŒ

1
H
E [Reward(p)]

where p is a random variable over PathsH(s0, ‡)
I Val(s0) = max‡:SæA Val(s0, ‡)
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Example: Pac-Man as an MDP

I Controller: Pac-Man
I Probabilistic model of ghosts

I Reward for eating food
I Large penalty for losing

I States: position of every agent,
what food is left

I Actions: Pac-Man moves
I Stochastic transitions: ghost moves

I Large MDP: ≥ 1016 states
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Receding horizon
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H

I Unfolding of the MDP

I Finite horizon computation of the best action: total reward
I Sliding window of depth H

I H big enough ; optimal strategy
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Final rewards
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I H not big enough ; rewards on leaves
I Estimations for long-term behaviours
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Sparse exploration
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I Large unfolding ; heuristics

I Uniform simulation: select actions at random to obtain a path
I Average reward over a few simulations ; estimate of ValH(s0)
I No formal guarantees of convergence
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Monte Carlo tree search (MCTS)
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I Iterative construction of a sparse tree with value estimates

I Selection of a new node ; simulation

; update of the estimates

I MCTS converges to the optimal choice (Kocsis & Szepesvári, 2006)
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Theoretical guarantees
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Sampling an unknown distribution

machine

E[Reward] Sn

Sn + t

Sn ≠ t

I Consider a slot machine (one-armed bandit)
I hidden reward distribution
I Estimate the expected reward?

Cherno�-Hoe�ding inequalities

Let X1, X2, . . . Xn be indep. random variables in [0, 1], Sn = 1
n

q
n

Xi .

I P
Ë
E[Sn] Ø Sn + t
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Multi-armed bandit and UCB algorithm

I Finite set of machines (actions), that give rewards when played
I Every machine has a hidden reward distribution
I How to find the best machine (expected reward)?
I Take samples according to a strategy, try to minimize regret

I UCB (Auer, Cesa-Bianchi, & Fischer, 2002) is a popular strategy
I It o�ers a solution to the exploitation/exploration trade-o�
I Optimal: regret is bounded logarithmically
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Upper-Confidence Bounds
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I confidence intervals around our observations
I UCB chooses the action with highest upper bound
I Optimism in the Face of Uncertainty
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The MCTS algorithm using UCB (Kocsis & Szepesvári, 2006)
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I Every state is seen as an instance of a bandit problem
I Selecting an action ; reward in the backwards propagation phase

I Using UCB for selection ; the rewards change over time
I Non-stationary bandits with Drift conditions
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Non-stationary bandits and drift conditions

I The reward distributions change after each play
I They must follow some assumptions (Drift conditions):

I The expected average reward of the first n plays of a converges

I Tail inequalities: same shape as Cherno�-Hoe�ding

I UCB can be extended under these assumptions
I When using UCB for selecting actions in MCTS, the reward

distributions satisfy the drift conditions (Kocsis & Szepesvári, 2006)
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Convergence of MCTS (Kocsis & Szepesvári, 2006)
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I After a given number of iterations n, MCTS outputs the best action
I The probability of choosing a suboptimal action converges to zero
I vi converges to the real value of ai at a speed of (log n)/n
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Convergence of MCTS with simulation
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I Unlike (Kocsis & Szepesvári, 2006), MCTS is often implemented with a
simulation phase used to initialise value estimates

I This changes the reward distributions of all UCB instances

I We show that the convergence properties of MCTS are maintained
for all simulations: any strategy can be used to draw samples
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Recent patch to MCTS

I The proof of (Kocsis & Szepesvári, 2006) is incomplete
I random variables assumed to be independent are not

I Non-Asymptotic Analysis of Monte Carlo Tree Search -
SIGMETRICS ’20, by (Shah, Xie, & Xu, 2020) fixed it!

I polynomial bias:
Ô

n instead of log(n)
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Symbolic advice
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Symbolic advice
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I An advice is a subset of PathsH(s0)
I Defined symbolically as a logical formula Ï (reachability or safety

property, LTL formula over finite traces, regular expression . . . )

I Ï defines a pruning of the unfolded MDP
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MCTS under advice
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I Select actions in the unfolding pruned by a selection advice Ï

I Simulation is restricted according to a simulation advice Â
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Safety property

I Some states are unsafe and should be avoided
I Advice Â: set of safe paths G. (x , y)p ”= (x , y)g

I Stronger property: safety is ensured no matter what stochastic
transitions are taken

I Enforceable advice Ï: set of paths so that every action chosen is
compatible with a strategy that enforces safety with horizon H
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Boolean Solvers

I The safety property Â can be encoded as a Boolean Formula

QBF solver

I A first action a0 is compatible with Ï i�

’s1÷a1’s2 . . . , s0a0s1a1s2 . . . |= Â

I Inductive way of constructing paths that satisfy the enforceable
advice Ï

I Alternation of quantifiers ; guarantee safety for h < H

Weighted sampling

I Simulation of safe paths according to Â

I Weighted SAT sampling (Chakraborty, Fremont, Meel, Seshia, & Vardi,
2014)
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MCTS under advice
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I Select actions in the unfolding pruned by a selection advice Ï

I Simulation is restricted according to a simulation advice Â

I We show that the convergence properties are maintained:
I for a selection advice that satisfies some assumptions,
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MCTS under advice
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Assumptions on the selection advice
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The selection advice must
I be strongly enforceable: can be enforced by controller if the MDP is

seen as a game ; does not partially prune stochastic transitions

I satisfy an optimality assumption: does not prune all optimal actions

24/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice



Assumptions on the selection advice

s0

s1

s1

s1

�
s2

�

a3

s2

s0

�
s2

�

a4

a3

s2

s0

s1

�
s2

X

a1

s2

�

a2

s2

s0

�
s2

�

a4

a4

a1

s2

s0

s1

X
s2

X

a1

s2

X

a2

s2

s0

X
s2

X

a4

a4

a2

The selection advice must
I be strongly enforceable: can be enforced by controller if the MDP is

seen as a game ; does not partially prune stochastic transitions

I satisfy an optimality assumption: does not prune all optimal actions

24/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice



Assumptions on the selection advice

s0

s1

s1

s1

�
s2

�

a3

s2

s0

�
s2

�

a4

a3

s2

s0

s1

X
s2

X

a1

s2

�

a2

s2

s0

�
s2

�

a4

a4

a1

s2

s0

s1

X
s2

X

a1

s2

X

a2

s2

s0

X
s2

X

a4

a4

a2

The selection advice must
I be strongly enforceable: can be enforced by controller if the MDP is

seen as a game ; does not partially prune stochastic transitions

I satisfy an optimality assumption: does not prune all optimal actions

24/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice



Assumptions on the selection advice

s0

s1

s1

s1

�
s2

�

a3

s2

s0

�
s2

�

a4

a3

s2

s0

s1

X
s2

X

a1

s2

�

a2

s2

s0

�
s2

�

a4

a4

a1

s2

s0

s1

X
s2

X

a1

s2

X

a2

s2

s0

X
s2

X

a4

a4

a2

The selection advice must
I be strongly enforceable: can be enforced by controller if the MDP is

seen as a game ; does not partially prune stochastic transitions
I satisfy an optimality assumption: does not prune all optimal actions

24/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice



Experimental results
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Experimental results

9 ◊ 21 maze, 4 random ghosts
Algorithm win loss no result after 300 steps food

MCTS 17 59 24 67
MCTS+Selection advice 25 54 21 71

MCTS+Simulation advice 71 29 0 88
MCTS+both advice 85 15 0 94

Human 44 56 0 75
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Conclusion

Contributions

I How to inject domain knowledge in MCTS?
I symbolic advice for selection and simulation

I How to preserve the convergence guarantees of MCTS?
I strongly enforceable advice with an optimality assumption

I How to implement them?
I symbolic solutions using SAT and QBF solvers

I Does it work on large MDPs?
I good results with safety advice on the Pac-Man domain

I What if the MDP is not known?
I learn it?

I paper on a scheduling problem in QEST ’21

Current and future works

I Support prism format for MDPs, LTL advice
I Study interactions with reinforcement learning techniques (and

neural networks)
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Thank you
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