Introduction

- Controller | Stochastic model of environment \models System
- \blacktriangleright Maximize reward \rightsquigarrow exploring the consequences of our decisions
- Very large systems \rightsquigarrow sparse exploration, anytime algorithms

Introduction

- Controller | Stochastic model of environment \models System
- \blacktriangleright Maximize reward \rightsquigarrow exploring the consequences of our decisions
- Very large systems \rightsquigarrow sparse exploration, anytime algorithms
- Monte Carlo tree search algorithm

Introduction

- $\blacktriangleright \ \ Controller \mid \mathsf{Stochastic} \ \mathsf{model} \ \mathsf{of} \ \mathsf{environment} \models \mathsf{System}$
- \blacktriangleright Maximize reward \rightsquigarrow exploring the consequences of our decisions
- Very large systems \rightsquigarrow sparse exploration, anytime algorithms
- Monte Carlo tree search algorithm
- ► Formal guarantees
- Symbolic advice to guide the exploration
- Learn the model?

Playing on an MDP

Markov Decision Process

Playing on an MDP

Markov Decision Process

Example: Pac-Man as an MDP

- Controller: Pac-ManProbabilistic model of ghosts
- States: position of every agent, what food is left
- Actions: Pac-Man moves
- Stochastic transitions: ghost moves

Example: Pac-Man as an MDP

- Controller: Pac-Man
- Probabilistic model of ghosts
- Reward for eating food
- Large penalty for losing

- States: position of every agent, what food is left
- Actions: Pac-Man moves
- Stochastic transitions: ghost moves
- Large MDP: ~ 10¹⁶ states

Receding horizon

Unfolding of the MDP

Receding horizon

- Unfolding of the MDP
- Finite horizon computation of the best action: total reward
- Sliding window of depth H

Receding horizon

- Unfolding of the MDP
- Finite horizon computation of the best action: total reward
- Sliding window of depth H
- ► H big enough ~→ optimal strategy

Final rewards

Sparse exploration

► Large unfolding ~→ heuristics

7/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice

Sparse exploration

- ► Large unfolding ~→ heuristics
- Uniform simulation: select actions at random to obtain a path
- Average reward over a few simulations \sim estimate of Val^H(s_0)
- No formal guarantees of convergence

Monte Carlo tree search (MCTS)

Iterative construction of a sparse tree with value estimates

8/28 Monte Carlo Tree Search for MDPs:,Formal Guarantees and Symbolic Advice

Monte Carlo tree search (MCTS)

► Iterative construction of a sparse tree with value estimates
► Selection of a new node ~ simulation

Monte Carlo tree search (MCTS)

- Iterative construction of a sparse tree with value estimates
- Selection of a new node \rightsquigarrow simulation \rightsquigarrow update of the estimates
- MCTS converges to the optimal choice (Kocsis & Szepesvári, 2006)

Theoretical guarantees

Sampling an unknown distribution

- Consider a slot machine (one-armed bandit)
- hidden reward distribution
- Estimate the expected reward?

Sampling an unknown distribution

- Consider a slot machine (one-armed bandit)
- hidden reward distribution
- Estimate the expected reward?

Chernoff-Hoeffding inequalities

Let $X_1, X_2, ..., X_n$ be indep. random variables in [0, 1], $S_n = \frac{1}{n} \sum_n X_i$. $\mathbb{P}\left[\mathbb{E}[S_n] \ge S_n + t\right] \le \exp\left(-2nt^2\right)$ $\mathbb{P}\left[\mathbb{E}[S_n] \le S_n - t\right] \le \exp\left(-2nt^2\right)$.

Multi-armed bandit and UCB algorithm

- Finite set of machines (actions), that give rewards when played
- Every machine has a hidden reward distribution
- How to find the best machine (expected reward)?
- Take samples according to a strategy, try to minimize regret

Multi-armed bandit and UCB algorithm

- Finite set of machines (actions), that give rewards when played
- Every machine has a hidden reward distribution
- How to find the best machine (expected reward)?
- Take samples according to a strategy, try to minimize regret
- UCB (Auer, Cesa-Bianchi, & Fischer, 2002) is a popular strategy
- It offers a solution to the exploitation/exploration trade-off
- Optimal: regret is bounded logarithmically

Upper-Confidence Bounds

- confidence intervals around our observations
- UCB chooses the action with highest upper bound
- Optimism in the Face of Uncertainty

Upper-Confidence Bounds

- confidence intervals around our observations
- UCB chooses the action with highest upper bound
- Optimism in the Face of Uncertainty

The MCTS algorithm using UCB (Kocsis & Szepesvári, 2006)

Every state is seen as an instance of a bandit problem

 \blacktriangleright Selecting an action \rightsquigarrow reward in the backwards propagation phase

The MCTS algorithm using UCB (Kocsis & Szepesvári, 2006)

- Every state is seen as an instance of a bandit problem
- \blacktriangleright Selecting an action \rightsquigarrow reward in the backwards propagation phase
- ▶ Using UCB for selection ~→ the rewards change over time
- Non-stationary bandits with Drift conditions

Non-stationary bandits and drift conditions

- The reward distributions change after each play
- They must follow some assumptions (Drift conditions):
 - The expected average reward of the first n plays of a converges
 - Tail inequalities: same shape as Chernoff-Hoeffding

Non-stationary bandits and drift conditions

- The reward distributions change after each play
- They must follow some assumptions (Drift conditions):
 - The expected average reward of the first n plays of a converges
 - Tail inequalities: same shape as Chernoff-Hoeffding
- UCB can be extended under these assumptions
- When using UCB for selecting actions in MCTS, the reward distributions satisfy the drift conditions (Kocsis & Szepesvári, 2006)

Convergence of MCTS (Kocsis & Szepesvári, 2006)

After a given number of iterations n, MCTS outputs the best action
The probability of choosing a suboptimal action converges to zero

▶ v_i converges to the real value of a_i at a speed of $(\log n)/n$

Convergence of MCTS with simulation

- Unlike (Kocsis & Szepesvári, 2006), MCTS is often implemented with a simulation phase used to initialise value estimates
- This changes the reward distributions of all UCB instances

Convergence of MCTS with simulation

- Unlike (Kocsis & Szepesvári, 2006), MCTS is often implemented with a simulation phase used to initialise value estimates
- This changes the reward distributions of all UCB instances
- We show that the convergence properties of MCTS are maintained for all simulations: any strategy can be used to draw samples

Recent patch to MCTS

- The proof of (Kocsis & Szepesvári, 2006) is incomplete
- random variables assumed to be independent are not

Recent patch to MCTS

- ► The proof of (Kocsis & Szepesvári, 2006) is incomplete
- random variables assumed to be independent are not
- Non-Asymptotic Analysis of Monte Carlo Tree Search -SIGMETRICS '20, by (Shah, Xie, & Xu, 2020) fixed it!
- ▶ polynomial bias: \sqrt{n} instead of $\log(n)$

Defined symbolically as a logical formula φ (reachability or safety property, LTL formula over finite traces, regular expression ...)

Defined symbolically as a logical formula φ (reachability or safety property, LTL formula over finite traces, regular expression ...)

- Defined symbolically as a logical formula φ (reachability or safety property, LTL formula over finite traces, regular expression ...)
- φ defines a pruning of the unfolded MDP

MCTS under advice

Safety property

- Some states are unsafe and should be avoided
- Advice ψ : set of safe paths **G**. $(x, y)_p \neq (x, y)_g$

Safety property

- Some states are unsafe and should be avoided
- Advice ψ : set of safe paths **G**. $(x, y)_p \neq (x, y)_g$
- Stronger property: safety is ensured no matter what stochastic transitions are taken
- Enforceable advice φ: set of paths so that every action chosen is compatible with a strategy that enforces safety with horizon H

Boolean Solvers

 \blacktriangleright The safety property ψ can be encoded as a Boolean Formula

Boolean Solvers

 \blacktriangleright The safety property ψ can be encoded as a Boolean Formula

QBF solver

• A first action a_0 is compatible with φ iff

 $\forall s_1 \exists a_1 \forall s_2 \dots, \ s_0 a_0 s_1 a_1 s_2 \dots \models \psi$

 \blacktriangleright Inductive way of constructing paths that satisfy the enforceable advice φ

▶ Alternation of quantifiers \sim guarantee safety for h < H

Boolean Solvers

 \blacktriangleright The safety property ψ can be encoded as a Boolean Formula

QBF solver

• A first action a_0 is compatible with φ iff

 $\forall s_1 \exists a_1 \forall s_2 \dots, \ s_0 a_0 s_1 a_1 s_2 \dots \models \psi$

 \blacktriangleright Inductive way of constructing paths that satisfy the enforceable advice φ

▶ Alternation of quantifiers \sim guarantee safety for h < H

Weighted sampling

- \blacktriangleright Simulation of safe paths according to ψ
- Weighted SAT sampling (Chakraborty, Fremont, Meel, Seshia, & Vardi, 2014)

MCTS under advice

 \blacktriangleright Simulation is restricted according to a simulation advice ψ

MCTS under advice

 \blacktriangleright Select actions in the unfolding pruned by a selection advice φ

- \blacktriangleright Simulation is restricted according to a simulation advice ψ
- We show that the convergence properties are maintained:
 - for a selection advice that satisfies some assumptions,
 - for all simulation advice.

The selection advice must

▶ be strongly enforceable: can be enforced by controller if the MDP is seen as a game ~> does not partially prune stochastic transitions

The selection advice must

▶ be strongly enforceable: can be enforced by controller if the MDP is seen as a game ~> does not partially prune stochastic transitions

The selection advice must

▶ be strongly enforceable: can be enforced by controller if the MDP is seen as a game ~> does not partially prune stochastic transitions

The selection advice must

- ▶ be strongly enforceable: can be enforced by controller if the MDP is seen as a game ~> does not partially prune stochastic transitions
- satisfy an optimality assumption: does not prune all optimal actions

Experimental results

Experimental results

 9×21 maze, 4 random ghosts

Algorithm	win	loss	no result after 300 steps	food
MCTS	17	59	24	67
MCTS+Selection advice	25	54	21	71
MCTS+Simulation advice	71	29	0	88
MCTS+both advice	85	15	0	94
Human	44	56	0	75

Conclusion

Contributions

- How to inject domain knowledge in MCTS?
 - symbolic advice for selection and simulation
- How to preserve the convergence guarantees of MCTS?
 - strongly enforceable advice with an optimality assumption
- How to implement them?
 - symbolic solutions using SAT and QBF solvers
- Does it work on large MDPs?
 - good results with safety advice on the Pac-Man domain
- What if the MDP is not known?
 - learn it?
 - paper on a scheduling problem in QEST '21

Conclusion

Contributions

- How to inject domain knowledge in MCTS?
 - symbolic advice for selection and simulation
- How to preserve the convergence guarantees of MCTS?
 - strongly enforceable advice with an optimality assumption
- How to implement them?
 - symbolic solutions using SAT and QBF solvers
- Does it work on large MDPs?
 - good results with safety advice on the Pac-Man domain
- What if the MDP is not known?
 - learn it?
 - paper on a scheduling problem in QEST '21

Current and future works

- Support prism format for MDPs, LTL advice
- Study interactions with reinforcement learning techniques (and neural networks)

Thank you